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Abstract: Several scholars have focused in recent years on conceptions of causality and 
the issues involved when one aims to make inductive inferences about causal effects in 
applied science (cf. Pearl, 2000).  Notwithstanding advances in understanding problems 
associated with causation, however, most specialists still agree that when feasible, random 
assignment of units to treatments provides the strongest basis for support of causal 
inferences. A particular approach to experimentation is outlined and recommended, one 
that entails use of prior information in (semi-random) assignments to treatments.  Next, a 
graphical approach to analysis is illustrated and discussed in the context of analyzing five 
real data sets.  The approach is particularly relevant to ‘dependent sample comparisons.’
Each data set to be presented has been published in a textbook, usually introductory.  
Illustrations will show that comprehensive graphical analyses often yield more nuanced, 
and sometimes quite different, interpretations of data than are derived from standard 
numerical summaries.  Indeed, several of our findings would not readily have been 
revealed without the aid of graphic or visual assessment.  Several of John Tukey’s
admonitions about data analysis will be seen to have special force and relevance. 



Introduction
Consider four main types of (paired) dependent samples data:

1a. Comparisons of (two) measurement instruments or scales for the same 
individuals or entities (time of measurement not seen as relevant); 

1b. Examination of trends or effects for repeated measures data (often with   
treatment intervention between measurements); and 

2a. Comparisons of (two) experimental treatments, or one treatment and a control,
for blocks (pairs) that were initially matched on the basis of prior information.

2b. Comparisons of (two) matched individuals, perhaps for two selected treatments,
where matching methods were used to form the subsets (pairs).

Category 2a is clearly most important in terms of facilitating efficient, 
constructive & informative causal analyses, notably when randomization has been 
used in the assignment of units within pairs to treatment groups. Randomization 
within blocks underpins experimental comparisons and can minimize doubts about 
selection bias.  It is chiefly selection bias that tends to confound interpretations of 
between-group comparisons for observational data.  Category 2b is important vis-à-
vis analysis of observational data, particularly in applications of propensity score 
methods; and matching can mitigate selection bias too.

Extension beyond pairs to triplets, quads, etc., is generally straight-
forward, although this idea is not routinely taught.  Ways to elaborate or extend  
graphics for dependent sample displays shown in the following slides will be noted. 



It would not be unreasonable to describe ‘idealized’ dependent sample 
comparisons (cf. 2a above) as ‘gold standards,’ as among the generally best kinds of 
models one could choose for experiments.  This is because in principle these designs, 
or paradigms, can often lead to highly efficient and scientifically informative studies 
with ‘near-optimal’ statistical properties. Furthermore, these designs are highly 
versatile, and can account for many real-world complexities (and lead to interaction 
discovery), in ways that are not widely taught nor well-understood.      

Idealized experiments based on blocking entail use of the most relevant 
prior information that is available to construct homogeneous blocks of units.  Absent 
experimental effects, responses of the (two) units or individuals within each block on 
the ultimate outcome measure should be notably similar to one another.  Each 
difference between (post-treatment) responses within a block may be taken as 
evidence of an experimental effect when treatment assignments were random. When 
effect estimates vary little across blocks it may be reasonable to make strong and 
generalizable statements of experimental effects even when sample sizes are quite 
small…as two  examples below will illustrate.  Because each block yields a separate 
estimate of the experimental effect each comparison corresponds to an independent 
replication of the experiment. When such effects are especially similar across blocks 
then conclusions are especially simple, and generalizability may be warranted.

Examples that correspond to categories 1b and 2b will also be provided, and 
discussed, with special emphasis on the value of graphical presentations.  



Some Examples of Dependent Sample data

The following slides illustrate use of a particular graphical method, here 
called a Dependent Sample Difference Score Assessment Plot*, to study dependent 
sample data. The first two examples use real data from true experiments; these are the 
kinds of studies that can yield the strongest scientific inferences, especially when 
certain easily checked conditions are met. The next pair of slides compare pre- and 
post-measurements of weights for girls who were involved in a therapy program to 
treat anorexia, followed by a study of stress related to the prospect of surgery.  The 
final slide exhibits use of matching to aid the analysis of observational data.

It has been surprising to learn that in these cases, and many other real data 
examples that have been examined graphically, there appear to be interesting patterns, 
trends, irregularities, etc., that call into question the appropriateness of ‘standard’
approaches to analysis, where the mean difference is either tested for significance, or 
a confidence interval is generated.  The key point in what follows will be to attempt to 
reveal as much as possible about what each dependent sample data set may have to
say, and to help insure that interpretation(s) are both as clear and comprehensive as
possible._____________________________________________________
*For a similar graphical method, see Rosenbaum (1989).
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The data shown above were taken from Snedecor and Cochran (1980) and 
correspond  to a true matched pairs experiment.  The data originally came from
Youden and Beale in 1934 who “wished to find out if two preparations of a virus 
would produce different effects on tobacco plants.  Half a leaf of a tobacco plant was 
rubbed with cheesecloth soaked in one preparation of the virus extract, and the second 
half was rubbed similarly with the second extract (Snedecor and Cochran, p. 86).”
Each point in the figure corresponds to the numbers of lesions on the two halves of 
leaves that had been treated differently.  Again, graphical display of experimental 
data* shows that the standard statistical test yields a statistically ‘significant’ result, 
despite the very small sample size; the correlation between X and Y scores is .90. 

Note that a standard analysis focuses only on numerical results and 
summaries, and a simple test of significance ignores the trend that can be discerned in 
the plot.  In particular, the plot shows a tendency for the departures of points from the 
heavy diagonal line to become larger as the mean (X,Y) values become larger, with a 
correlation of +.77.  That is, the more lesions that are manifest on any one tobacco 
leaf, the more the ‘X’ viral extract counts are likely to exceed those for ‘Y’. Although 
this is a small data set, this analysis shows that there is a statistically significant 
difference between the two viral extracts, but the X extract shows a tendency to yield 
more lesions than the Y extract for leaves with more lesions.  Before concluding that
this is the best conclusion, however, see Appendix B.
*See Appendix B to see the relevance of score transformations in this context .
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The figure above displays the well-known data set on shoe wear 
initially given by Box, Hunter and Hunter (1978).  One sole made of material 
‘X,’ and another made of material ‘Y,’ were randomly assigned to the shoes of 
ten active boys.  The X,Y scores are measures of wear for the two materials. 
This is a ‘true experiment’ based on matched pairs where a relatively strong 
cause/effect conclusion is justified, using observations of wear taken some time 
after the soles had been attached.  The numerical summary and the plot show a 
large standardized effect size, where the Y-material wore longer than the X-
material. Indeed, ‘statistical significance’ is noted (see legend) despite the 
small sample size, this being a consequence of the small variation in the D’s. 
The near uniformity of effects is also largely responsible for an effect size 
whose magnitude exceeds unity.  

Although the high correlation (.99) between X and Y scores is 
related to the relatively small variance of the D’s, note that a high correlation 
alone is not sufficient, since as the preceding example showed, the major 
ellipse associated with the X,Y point swarm may not be a line with slope near 
to unity.  Because random assignments had been used with matched pairs, and 
the shoe data results are so clear, this kind of design can be see as a gold 
standard exemplar of a true experiment; blocking was highly effective in 
reducing variation of the D’s, and response variable metric is also well chosen.  
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The data set shown above consists of weights in pounds for n = 17 girls 
who were weighed before and after treatment for anorexia.  These data were 
originally published by Hand, et al, 1993, and were reprinted in Howell (2001). X 
scores are weights (in lbs.) after family therapy; Y scores are corresponding weights 
before therapy.  A difference score, D, is positive (and below the main diagonal line) 
for a girl who gains weight, negative if she lost weight.  Summary statistics are given 
in the legend for the usual omnibus question:  Is there evidence that girls gained 
weight following therapy, and if so, is the effect ‘statistically significant’?  The broad 
answer is in the affirmative since the average weight gain was 7.26 lbs and the 
corresponding t-statistic is 4.18. Even the standardized effect size, 1.01, is notable.  

The plot, however, tells a more nuanced story.  The cluster of points at the 
extreme left show that these four girls (those w/ id’s 6,7,10, 11) actually lost weight.   
Indeed, the remaining 13 girls had an average weight gain of 10.4 lbs, and for them 
the standardized effect size was an impressive 2.26 (t moves up to 8.22, although 
post-hoc data selection undermines probabilistic interpretation of this statistic – more 
on this later).  Note also that the rug plot for the post-test scores at the top of the 
figure shows two distinctive subgroups of scores/weights, while no clusters can be 
seen on the right-side rug plot that reflects pre-experimental weights. One has to 
wonder what was different for the four girls who did not profit from their family 
therapy, and indeed lost weight over its course.
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The preceding figure appears to yield new insights for analysis of time-
related data taken from Howell (2002, pps. 218-19) concerning blood levels of beta-
endorphin for 19 patients prior to surgery.  The Y scores show beta-endorphin levels 12 
hours before surgery, Xs show levels 10 minutes before surgery; beta-endorphin scores 
are intended to measure stress.  Conventional analysis yields a t-statistic equal to 2.48, 
suggesting that stress levels rise ‘significantly’ just prior to surgery.  Indeed, the 
standardized effect size of .57 is moderate-to-large by conventional standards.  

The plot in Figure 4 tells a different story: Three or four patients (ids: 13, 8, 
11 and perhaps 7) had beta-endorphin levels much higher just prior to surgery, com-
pared with earlier scores.  If data for these four highest D’s are removed, the remaining 
data depict a much lower stress effect, non-significant (� =.05), with a lower standard-
ized effect size of .45. In fact, five of these 15 persons had lower beta-endorphin levels 
just prior to surgery than 12 hours earlier.  Note also that there is little correspondence 
between these two measures of stress, actually a negative correlation (-.06), so that use 
of repeated measures did not reduce variance of D’s in this situation. Some form of 
interaction seems evident; in particular, one would like to know what distinguishes 
persons who manifest notably higher levels of stress just prior to surgery from those 
whose beta-endorphin levels were similar on the two occasions.  At the least, it seems 
inappropriate to leave the analysis with the simplistic conclusion that ‘surgery 
significantly increases stress (as evidenced by elevated beta-endorphin levels).’
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Data shown in the preceding slide are based on an observational study by
Morten, et. al (1982, Amer. Jour. Epidemiology, p. 549 ff). Children of parents who had 
worked in a factory where lead was used in making batteries were matched by age and 
neighborhood with children whose parents did not work in lead-related industries. Whole 
blood was assessed for lead content yielding measurments in MicroLiters/dl; results shown 
compare the Exposed w/ Control Children.  Conventional dependent sample analysis 
shows that the Effect Size was about 1 standard deviation unit, the (95%) C.I. is far from 
zero, and the t-statistic for the mean of the difference scores was 5.78, so the results 
support the interpretation that parents’ lead-related occupations tend generally to influence 
how much lead is found in their children's blood.

Examination of the graphic shows more, however. Note the wide dispersion of 
lead measurements for Exposed children in comparison with their Control counterparts.  
One interpretation of this result is that it is the particular characteristics of parents’
experiences at work or home with their children that need to be taken into account to make 
the comparison most informative. That is, given the wide variation in blood levels across  
the Exposed group, where those with the lowest levels are quite comparable with their 
Control counterparts, but not those corresponding to points on the far right side, it seems 
reasonable to say that the general hypothesis should be reformulated in terms of specifics.

Although it is not certain that Control & Exposed children did not differ in other 
ways (than age and neighborhood of residence), Rosenbaum (2002) uses a sensitivity 
analysis to show that the hidden bias would have to be quite extreme to explain away 
differences this large.  This example can be seen as related to propensity score analysis.



Some further points 

Although the concept of matching is virtually never extended beyond pairs 
in textbook treatments (no example could be found in any introductory text; and 
seemingly only one experimental design text notes this possibility), the two dependent 
sample paradigm is easily extended to deal with more complex situations.  

For example, suppose a matched sample procedure were used, but instead 
of forming pairs, triples or quads were constructed in the context of comparing three 
or four treatments.  In such cases, planned comparison contrasts may be used to 
generate two or more pairs of difference scores for the system of contrasts.  In the 
case of a three group experiment one might use coefficients, say c1 = [1, -1, 0] to 
generate a difference score for the first in relation to the second treatment; then a 
second contrast, c2 = [ ½, ½ , -1], yields difference scores based on comparison of the 
average of the first two treatments, and the third.  For each contrast, an Assessment 
Plot has potential to provide visual evidence of treatment effects, going beyond 
standard summaries for planned comparison contrasts.  Effect size computation, 
formal hypothesis tests, and confidence intervals are easily generated using one or 
more pooled variance estimates, borrowing strength as it were, in order to obtain 
greatest efficiency for inferential applications as taught by Fisher as early as 1935; but 
a search for patterns, trends and anomalies can also accompany any such comparison.



Extension to other more complex designs is also straightforward. For 
example, for matched quads, assignments to four treatments arranged in a 2 x 2 
factorial may be used to generate data organized in four columns to correspond to 
four ‘cells’ in a factorial arrangement; two main effect contrasts and one for 
interaction are generally easy to construct and analyze in such a case, which is an 
interesting point for those who teach that contrasts are for ‘one-way’ analysis of 
variance. Again, however, the potential of plots to show details of real data may be 
such that an emphasis on hypothesis tests, confidence intervals or even effect sizes 
will be seen as inappropriate or notably incomplete.  Note that ‘robustification’ may 
be beside the point also, since it usually entails heavy emphasis on data summary.  

Still, if  there are clusters, patterns or outliers [most easily exposed using 
graphs] then interpretation of conventional summary statistics will be incomplete, 
and possibly relatively unimportant to the investigator who collected the data than 
revised questions that follow from careful analysis of sample data.

It seems essential to plot one’s data, and that generally requires software to 
facilitate effective visualization.  The [Splus or R] function used here is available 
from rmpruzek@yahoo.com upon request; more importantly, the entire R package is 
free. You may download the comprehensive statistics software package called R, 
that is ‘not unlike Splus,’ from:  http://www.r-project.org. Note that R includes 
many accessories, including several pdf teaching and help files, and has superb 
graphics capabilities of many kinds. 



Discussion

Given departures of points from the identity diagonal, the analyst usually seeks 
evidence of minor variation among effects across pairs, or blocks, because the strongest 
generalizations about experimental effects are supported when there are differences 
depart from zero and are similar to one another. But experiments often yield evidence of 
discernable, and perhaps distinctive, differences in experimental effects across blocks 
(pairs). When there are patterns, trends, clusters and outliers (most easily seen in plots) 
this can be seen as evidence of interactions between treatments and the variables used 
to form blocks.  Indeed, there is reason to believe that even most well-prepared and 
knowledgeable investigators who design highly efficient experiments may not be able to 
make accurate predictions about particular interactions.  

The basic idea that has been emphasized is that of focusing on details of what 
data have to say, not summarizing too quickly, trying to avoid the temptation to focus on 
formal inference at the expense of ignoring particulars of data. The recently departed 
John W. Tukey spent much of his professional life discussing and demonstrating the 
value of graphs, plots, and visualization in data analysis, trying to insure that numerical 
summaries, inferential statistics, and graphics would be used in service of understanding 
data rather than becoming ends in themselves. How can we do more to insure that his 
teaching is not forgotten?  Numerous articles, chapters, and talks by John Tukey provide 
elaboration of this central point; see one of the several Collected works of John Tukey 
(e.g., Jones, 1996), or for a psychology-related reference, Tukey (1969).  



However much I have read John Tukey’s writing over the years, much of the 
strongest evidence I have found to reinforce a central message of John Tukey has come 
from passing several real data sets through software designed to expose details of 
dependent sample experimental data. Indeed, with the help of my research assistant*, I 
find it is fairly rare, even for the most well-designed experimental studies, to see data so 
clean that standard summary statistics are ‘wholly adequate’ for real data analysis.

I would further argue, at least from the perspective of studying the dependent 
sample paradigm, students rarely see examples of sound and comprehensive real data 
analyses in their primary textbooks. Even authors of books on (experimental) design seem 
rarely to concentrate on data-driven questions, nor to use data to refine or modify initial 
hypotheses or research questions. Authors almost inevitably focus on methods, qua 
methods, even when it would be a very worthwhile ‘digression’ to focus on data!

Indeed, there seems to be a general deficiency in introductory statistics books as 
related to teaching of many central ideas of what we might call Tukey-based data analysis.  
In our review of over 20 introductory statistics books, only a few authors were found to 
provide more than perfunctory discussion of the notion that research questions must often 
be modified, refined, or elaborated in the light of data. And none provided X,Y plots for 
dependent sample data, without which patterns, trends and clusters in data generally will 
not be found._______________________________________________________  
*Thanks to Katerina Passa for her fine help.
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Appendix A
Features to note for Difference Score Assessment Plots*:
1.  Solid diagonal line has intercept zero, slope one.  Since the line indicates X = Y, it follows that when differences 

D = X – Y are below this line then X is larger than Y, and vice versa. 
2. Each X, Y point corresponds to a filled circle; the marginal distribution of X is given by the ‘rug’ plot (blue ticks) 

along the top, similarly for marginal distribution of Y along right side of plot.  Dashed vertical and horizontal lines
correspond to 

3.  The perpendicular distance between any point and heavy black diagonal corresponds to a difference D = X – Y; 
however, the perpendicular Cartesian distance from any point and the main diagonal actually equals D/sqrt(2).  This
is because distance measured on the diagonal must be adjusted to correspond to that of horizontal or vertical metric.

4.  Each projection (parallel to the 45° line, toward lower left) from a diamond to the perpendicular at the lower left
stops first at a (blue) ‘+’ such that the system of (jittered) +’s depicts the marginal distribution of n D’s;  the heavy
(red) dashed line depicts   . Note that corresponds to intersection of marginal means, i.e., to 

5# The second marginal distribution that derives from the D’s (the red points, at extreme lower left) is a uniform
distribution whose mean is the same as that of the D’s, and whose standard deviation is defined so that the t-statistic
for the uniform (ranked) counterpart of the D distribution yields a one-sample t-statistic that is the same as the
parametric t (cf. Conover and Iman, 1981). (An optimization method is used to accomplish the latter task.)

6. The upper-left legend shows the numerical value of   , as well as standardized effect size (ES) (computed as 
where s(D) denotes standard deviation of D’s); also, first line of this legend shows t-statistic associated with ES.

7. The second line of upper-left legend gives 95% confidence limits for the mean population difference.  Sample size
(n), i.e., the number of points, is also printed in the legend.

8. When n exceeds 49, the Wilcoxon Z statistic (based on ranks of D’s) is printed. (Note that when Z’s magnitude
exceeds that of t then ‘outlier’ D’s are likely to be evident in plot.)_____________________________________

* For a similar plot, see Paul Rosenbaum (1989). #The second marginal is not implemented in this presentation.
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Appendix B:  Another view of the Tobacco leaf data 

Consider what happens if the question about experimental effects were 
modified in the case of the tobacco leaf data, that is for the first of the preceding 
examples?  In particular, suppose that instead of computing, for each pair, the 
difference between X and Y scores, that the ratio of X to Y were computed.  There 
is nothing magical about using algebraic differences to assess experimental 
effects.  For example, one might just as well ask whether ratios of the form X/Y 
tend systematically to differ from unity as evidence that one treatment is different 
than the other.  A natural variant of this idea is to use logs of ratios, whence it is 
recalled that log(X/Y) = log(X) – log(Y).  It follows that logs, and differences 
between logs, new Ds, may be used as a basis for analysis; this will now be 
demonstrated for these data.
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As seen in the legend in this final figure, when logs are used in the analysis, 
the ES rises to 1.1, compared to the previous value of .93; further, the t-statistic 
increases to 3.11 (compared to 2.63 before), and the confidence interval is more 
clearly separated from zero.  These more salient markers of effects are closely 
related to the finding that the correlation between the sums, or means, of X,Y 
values, and their differences has dropped to .18, substantially lower than its raw 
score counterpart of .77.  Finally,  the log-based plot itself seems more persuasive 
in showing simply that the X-virus produces more lesions than the Y-virus. 

Taken together, these results strongly recommend a particular transformation 
(or reexpression), viz., logs, to show experimental effects; simple raw differences 
seem less adequate.  It may be recalled that neither Youden and Beale, who 
initially collected these data, nor Snedecor and Cochran who presented them to 
illustrate the two dependent sample method, considered transformation methods in 
the context of this analysis.  The broader point of course is that there is no reason 
generally not to consider transformations or reexpressions in analyses; such steps 
can both strengthen conclusions and simplify interpretations.  It has often been 
found that log transforms are helpful in analyses of  ‘counted’ data.


