
A paradigm to support causal inferences                         
when resources are limited.

R.M. Pruzek

Introduction: Suppose you want to do a study that will be seen by 
persons you respect as most interesting and full of promise for further 
work.  You would be hard-pressed to do better in many situations 
than to perform a well-designed true experiment, especially if the 
results turn out to be ‘significant.’ True experiments are usually 
characterized as studies in which persons (or entities) are randomly 
assigned to treatments at the outset of study; responses are recorded 
and compared following the treatments.  Unfortunately, it is not often 
taught that simple random assignment to treatments, while helpful, is 
generally inferior, often hugely so, to another approach that also 
entails random assignment, but not the most simple kind. The first 
several slides below show examples of the alternative paradigm. 
Those that follow show variations, extensions and improvements. 



Some preliminaries:

For the following pairs of slides, I first show ‘raw’ data in 
the form of a modern plot, and then present corresponding narrative. 
The graphics are annotated; they should be studied carefully to 
discern details of what data have to say. The central idea is to use 
specialized plots to present certain kinds of data so as to provide 
more information than is usually given for these kinds of data. An 
Appendix containing technical details is provided at the end. 

The second slide in each pair contains a brief narrative to 
describe what the data seem to show. In the early slides primary
attention is given to more or less ‘conventional’ statistical findings; 
in latter slides, where the data become somewhat more complex, the 
story becomes less conventional, but more realistic. The ultimate 
aim is to discuss and account for issues that often arise in analyses 
of real data. That all data below are ‘real’ is worthy of special note.
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Mean D = 10.2  ES(D-bar)= 1.4  t(D-bar)= 4.42
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Social awareness data, two environments for 10 identical twin pairs



The figure above shows data for ten pairs of identical twins, 
age four (Siegel, 1956), randomly selected for an experiment to 
investigate how nursery school affects social awareness at this age. 
For each pair, one twin was randomly assigned to nursery school 
while the other stayed home. At the end of the time period, all 20 
children took the same test and their scores were recorded.

As can be seen from the legend, a formal parametric test 
shows significance (t = 4.40) with a standard alpha; of course, the 
95% confidence interval does not span zero.  The small variance of 
the D scores (and rxy = .91) is responsible for the large effect (ES 
=1.4 =    / SD] ) despite the small sample size.  

However, the graphic shows that for one pair the social 
awareness score was lower for the twin who attended nursery 
school than for the one who stayed home. Although more details 
would be good to have for all twin pairs, it might be most  
interesting to learn more about the ‘outlier’ twin pair.

D
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Mean D = 0.28  ES(D-bar)= 1.1  t(D-bar)= 3.11

95%CI: LL=  0.07  UL=  0.5

 Sample Size (n) = 8
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Youden & Beale tobacco leaf virus data, from a true experiment



The data above were taken from Snedecor & Cochran (1980) 
and correspond  to a true matched pairs experiment. The data came 
originally from Youden & Beale in 1934 who “wished to find out if 
two preparations of a virus would produce different effects on tobacco 
plants. Half a leaf of a tobacco plant was rubbed with cheesecloth 
soaked in one preparation of virus extract, and the second half was 
rubbed … with the second extract (Snedecor and Cochran, p. 86).”

Each point in the figure corresponds to the log* of numbers of 
lesions on the two halves of leaves that had been treated differently. 
The preceding graphical display of these experimental data shows that 
there was variation across tobacco leaves, and the test statistic, t = 3.11, 
can be interpreted straightforwardly. This is (strong) evidence to 
suggest that the ‘X-virus effect’ is stronger than that of Y, and this 
should generalize to a ‘hypothetical population.’ That the test result is 
‘significant’ despite the very small sample size is again a consequence 
of the small variation in difference scores (D = X - Y), and is also 
related to finding a high correlation (rxy =.87) between X & Y scores. 
*Unfortunately, logarithms were not used previously; will discuss if time permits.
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Mean D = 2.62  ES(D-bar)= 0.56  t(D-bar)= 2.15

95%CI: LL=  0.01  UL=  5.23

 Sample Size (n) = 15
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Dependent sample difference plot, Darwin Fertilization data
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The data shown above are measurements recorded by Charles 
Darwin in 1878. The X,Y pairs correspond to heights in inches of
cross-fertilized and self-fertilized plants, Zea mays, where each pair 
had been grown in the same pot. 

Note that the t-statistic again reaches significance by 
conventional standards despite the small sample size (t = 2.15), 
showing an advantage of cross-fertilization. Effect size is .56, but the 
correlation between the two measures is actually negative, rxy = -.33.  
Perhaps the most notable result, shown clearly in the graphic, is that 
two pots showed self-fertilization to work much better than cross-
fertilization.  It would be interesting to hear Darwin’s commentary 
about this result – which he almost surely was aware of, since he was 
noted for his keen observational skills. As is common, the statistical 
analyst who presented these data said nothing about the outliers.  
Still, it is a key point for our purposes to note that real data often 
entail such complications, and their study may well lead to useful 
findings, or qualifications.  More about such things later.
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Mean D = 0.41  ES(D-bar)= 1.06  t(D-bar)= 3.35
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Box, Hunter & Hunter shoe wear data, for ten boys



The figure above displays the well-known data set on shoe 
wear initially given in Box, Hunter and Hunter (1978).  One sole made 
of ‘X-material,’ and another made of ‘Y-material,’ were randomly 
assigned to the two shoes of ten boys. The X &Y scores are measures 
of wear for the two materials.  This true experiment is again a matched 
pairs design and it too yields a relatively strong cause-effect inference, 
despite the small sample size. This is a consequence of the very small 
variation in the D’s. The near uniformity of effects is also largely 
responsible for an effect size whose magnitude exceeds unity.   

In cases like this the numerical summary is particularly 
effective in summarizing the data, and the plot shows clearly why 
these data provide a basis for generalization. Although data from the 
behavioral sciences rarely admit to the precision of physical 
measurement seen here, and therefore rarely show such small variation 
in effects, the basic methods still provide a sound model for planning 
of an experiment. The key is to find ‘homogeneous pairs’ at the outset. 



Interim summary: All* foregoing graphics pertain to results from  
true matched pairs experiments. Each point in each plot corresponds 
to a particular replication a larger experiment; the set of difference 
scores summarizes effects for n experimental replications. In each 
case random assignment within pairs was used (sometimes tacitly); 
this provided a basis for making relatively strong inferences of cause 
and effect at the end of the experiment.  Absent treatment effects, each 
point should lie close to the X=Y diagonal; departures from this
diagonal signify effects; systematic departures will often generalize.
The most efficient experiments are ones where the members of pairs 
are highly similar at the outset.  Still, as outliers reminded us, even 
the best of such experiments can result in findings that complicate or 
qualify results. In general, interactions may be expected, a point 
worthy of discussion. [*First example recently found to be artificial.]                                  

In the next set of slides, data for repeated measures studies,
those with a time component, are presented.  Although rm studies are 
in principle weaker, they can still be quite informative. 



-4 -2 0 2 4 6

-4
-2

0
2

4
6

Laevo

D
ex

tro

Mean D = 1.58  ES(D-bar)= 1.28  t(D-bar)= 4.06

95%CI: LL=  0.7  UL=  2.46
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Cushney, Peebles data, hours of 'excess' sleep per week, two drugs compared



The preceding data (for ten patients) are from Cushney and 
Peebles (1905) J. of Phisiology.  Initially, the average number of hours  
they slept was determined. In Part 1 it was decided by a flip of a coin 
which one of the two drugs, Laevo or Dextro, would be given first. 
The average (over a week) number of excess hours of sleep (over their 
usual average) was recorded. In Part 2 (after a ‘wash out’ period) the 
other drug was given; the average (for a week) number of excess hours 
of sleep (over their usual average) was then recorded.  

The drug Laevo showed the larger effect, with a significant t
(4.05). Curiously, when the point (no. 9) showing largest drug effect is 
removed, the t-statistic becomes larger (t = 5.66). You should be able 
to answer this question! Study details are unavailable, which is just as 
well since these drugs are no longer of interest.  Still, the methodology 
of that study remains worthy of examination. 
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Mean D = 7.7  ES(D-bar)= 0.57  t(D-bar)= 2.48

95%CI: LL=  1.18  UL=  14.22

 Sample Size (n) = 19
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Beta-endorphin scores (to reflect stress) of patients prior to surgery



The preceding figure appears to yield new insights for 
analysis of time-related data taken from Howell (2002, pps. 218-19) 
concerning blood levels of beta-endorphin for 19 patients prior to 
surgery.  The Y scores show beta-endorphin levels 12 hours before 
surgery, X’s show levels 10 minutes before surgery; beta-endorphin 
levels in the blood were taken to measure stress. These are repeated  
measures data, not those of a ‘true experiment.’ Conventional 
analysis yields a t-statistic equal to 2.48, suggesting that stress levels 
rise ‘significantly’ just prior to surgery.  The effect size of .57 is 
moderate-to-large by conventional standards.  

The plot, however, tells a rather different story: Three or four
patients had beta-endorphin levels much higher just prior to surgery, 
compared with earlier scores.  But if data for these four highest D’s 
are removed, the remaining data depict a much lower stress effect, 
non-significant (� =.05), and a standardized effect size of .45. In 
fact, five of these 15 persons had lower beta-endorphin levels just 
prior to surgery than 12 hours earlier. What is your interpretation?



70 80 90 100

70
80

90
10

0

After Fam. Therapy

B
ef

or
e 

Fa
m

. T
he

ra
py

Mean D = 7.26  ES(D-bar)= 1.01  t(D-bar)= 4.18
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Weights of n=17 girls before and after family therapy for anorexia
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The data set shown above consists of weights in pounds for
n = 17 girls who were weighed before and after therapy as a 
treatment for anorexia.  These data were originally published by
Hand, et al, 1994. Y scores are weights (in lbs.) before therapy; X 
scores are corresponding weights after family therapy. Note that
most girls gained weight, with an average gain of 7.26 lbs; the 
overall effect is statistically significant effect (t= 4.18) and even 
the standardized effect size, 1.01, is notable. (Again, this is a 
repeated measures study, with intervening treatment.)         

The plot, however, tells a more nuanced story. The cluster 
of points at the extreme left shows that four girls (those w/ id’s
6,7,10, 11) actually lost weight.  Indeed, the remaining 13 girls had 
an average weight gain of 10.4 lbs, and for them the standardized 
effect size was an impressive 2.26.  Surely, one would like to know 
more about the girls who lost weight over the course of therapy.
What is your interpretation of these results in light of this plot?
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Mean D = 0.6  ES(D-bar)= 1.89  t(D-bar)= 5.34

95%CI: LL=  0.33  UL=  0.87
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Effects of exercise on lactate for eight men; Devore & Peck, p. 435



Several men participated in  a training camp in which 
blood lactate levels were measured before and after exercise, 
viz., three games of racquetball.  The results show (logarithms 
of) lactate levels for eight men that were reported in the 
research article following the data collection, Research 
Quarterly for Exercise and Sport, (1991): 109-114.  As you 
can see, the summary statistics show a ‘highly significant’ 
statistical effect, and of course a confidence interval that does 
not span zero.  

The plot, however, shows two subsets of men, of size 
three and five respectively, for which the results seem notably 
different.  Note that logs were taken because this transform of 
the data led to a larger t-statistic, and sharpened the picture.  It 
appears that different men, perhaps with differing levels of 
fitness, responded quite differently from one another, although 
the sample size may be too small to infer much here.



Discussion: Although the concept of matching is virtually 
never extended beyond pairs in textbook treatments (no example 
could be found in any introductory text; and seemingly only one 
experimental design text notes this possibility), the two dependent 
sample paradigm is easily extended to deal with more complex 
situations.  

For example, suppose a matched sample procedure were 
used, but instead of forming pairs, triplets were constructed in the 
context of comparing three treatments.  In such a case, planned 
comparison contrasts may be used to generate two pairs of difference 
scores for the system of contrasts.  For example, one could use 
coefficients such as c1 = [1, -1, 0] to generate a difference score for 
the first in relation to the second treatment, then c2= [ ½, ½ , -1] to 
yield difference scores based on comparison of the average of the 
first two treatments, and the third.  The idea extends easily to several 
treatment comparisons via contrasts.  



If they are appropriate, effect sizes, formal hypothesis tests, and 
confidence intervals are easily generated in these contexts.  Prior 
knowledge serves as a substitute, as it were, for data and can lead to 
highly efficient use of resources when advantage is taken of 
homogeneous pairs, triplets, etc. It is always advantageous to use 
resources efficiently and the foregoing examples show that there may be 
notable potential for ‘maximal gain from minimal resources’ if a 
graphically based dependent sample paradigm is used effectively.

But note well: If graphics do expose clusters, patterns or 
outliers, then interpretation of conventional summary statistics will 
generally be incomplete, and can be misleading.  Initial questions or 
hypotheses may demand modification or major revision, depending 
on details of what the data have to say. For example, if notable clusters 
of points are found in such plots, this can be taken as evidence of 
interactions, and one will want to learn what distinguishes the clusters of 
points from one another. Further studies may be helpful to track down 
just how experimental effects are dependent on how units are defined or 
selected.  Review and extend these examples to generalize results.



Appendix
Features to note about dependent sample difference score plots:

1.  The heavy diagonal line has intercept zero, slope one.  Since X = Y for line, it follows that 
difference points, D = X – Y, below this line indicate X is larger than Y, and vice versa.  
(For a similar plot, see Rosenbaum (1989, American Statistician).

2.   Each X, Y point corresponds to a bold diamond; the marginal distribution of X is given by  
the ‘rug’ plot (red ticks) along the top, similarly for marginal distribution of Y along right
side of plot.  Dashed horizontal and vertical lines correspond to 

3.  The perpendicular distance between any point and heavy black diagonal corresponds to a
difference D = X – Y; however, the perpendicular projection showing Cartesian distance     
between any point and the diagonal actually equals D/sqrt(2).  This is because distance
measured on the diagonal requires adjusted to correspond to horizontal or vertical metric.

4.  Each projection (parallel to the 45° line, toward lower left) from a point to the perpendicular
at the lower left) ends w/ a (blue) ‘o’ such that the system of (jittered) o’s depicts the
marginal distribution of n D’s; the heavy (red) dashed line depicts       . Note also
that this line corresponds to the intersection of marginal means, i.e., to             

5.  The upper-left legend provides the numerical value of       & standardized effect size (ES),  
computed as  / s(D) where s(D) denotes standard deviation of D’s; also, first line of

this legend includes the t-statistic associated with      .
6.  The second line of upper-left legend provides 95% confidence limits for mean population

difference. Sample size, the number of D’s, is denoted as n.
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Exercise: Using either data from the one page handout   
(p. 429 ff of Devore and Peck, 1994), or from any other 
source you find interesting, use the dep.samp.aplt
function (below) to analyze dependent sample data for two 
groups.  Be sure to write up your results to show 
comprehensively what you have learned from the data 
analysis.


